多模光纤(Multimode Fiber, MMF):定义、原理、特性及光通信应用
多模光纤是光通信领域核心传输介质之一,其核心特征是纤芯直径较大(典型值 50μm 或 62.5μm),允许多路不同角度的光信号(即 “多模”)同时在纤芯中传输,适用于中短距离、中低速率的光信号传输场景。以下从专业角度系统解析其关键信息: 一、核心原理:“多路径传输” 的本质 光纤的传输基础是光的全反射:光信号从纤芯射入,在纤芯与包层(折射率低于纤芯)的界面发生全反射,从而沿光纤向前传播。 多模光纤的纤芯直径远大于单模光纤(单模纤芯仅 9μm),足够容纳多个 “传播模式”(可理解为光信号的不同传播路径)。例如:部分光信号沿纤芯中轴线直线传播(基模),部分光信号以一定角度斜射传播(高次模),多路信号并行传输但最终同步到达接收端。 关键参数:数值孔径(NA) 是多模光纤的核心指标,反映其收集光信号的能力(NA 越大,接收光的角度范围越广,越易与光源耦合),典型多模光纤 NA 值为 0.20 或 0.275。 二、多模光纤的关键特性(与单模光纤对比) 特性维度 多模光纤(MMF) 单模光纤(SMF) 核心影响(光通信应用场景) 纤芯直径 50μm 或 62.5μm(主流) 9μm(标准) 多模纤芯粗,易与 LED、VCSEL 光源耦合,降低光模块成本;单模需配合 LD 光源,成本较高 传输模式 多模(数百至上千个模式) 单模(仅基模) 多模存在 “模式色散”,限制传输距离和速率;单模无模式色散,支持长距离高速传输 模式色散 显著(核心缺陷) 可忽略 多模中不同路径的光信号到达时间差,导致信号畸变,速率越高、距离越长越明显 传输距离(典型) 10Gbps:≤300m(OM4)、≤550m(OM5);40Gbps:≤100m(OM4)、≤150m(OM5) 10Gbps:≤10km;100Gbps:≤80km(无中继) 多模适用于机房内部、楼宇间短距互联;单模用于骨干网、长途传输 光源类型 LED(低速)、VCSEL(高速,如 10G/40G/100G) LD(激光二极管,高速长距) VCSEL 光源成本远低于 LD,是多模光纤在数据中心广泛应用的核心原因 带宽(MHz・km) OM1:200;OM2:500;OM3:2000;OM4:4700;OM5:5000 …





